Page-Based Pagination¶
What is Page-Based Pagination?¶
Page-Based pagination divides the dataset into pages and allows navigation through these pages.
You specify the page number and the number of items per page. Usually, the first page is 1
and names page
and size
are used for the page number and the number of items per page, respectively.
Advantages¶
- Intuitive for users as it mimics the concept of pages in a book.
- Easy to implement and understand.
Disadvantages¶
- Can be inefficient for large datasets.
- May lead to inconsistent results if the data changes frequently.
Example:
from fastapi_pagination import paginate, set_page, set_params
from fastapi_pagination.default import Page, Params
set_page(Page[int])
set_params(Params(page=2, size=10))
page = paginate([*range(100)])
print(page.model_dump_json(indent=4))
Limit-Offset Pagination¶
What is Limit-Offset Pagination?¶
Limit-Offset pagination is a technique where you specify the number of records retrieve limit
and
the starting point offset
. This method is straightforward and easy to implement.
Advantages¶
- Simple to understand and implement.
- Works well for small datasets.
Disadvantages¶
- Inefficient for large datasets as the offset increases.
- Can lead to inconsistent results if the data changes frequently.
Example:
from fastapi_pagination import paginate, set_page, set_params
from fastapi_pagination.limit_offset import LimitOffsetParams, LimitOffsetPage
set_page(LimitOffsetPage[int])
set_params(LimitOffsetParams(limit=10, offset=5))
page = paginate([*range(100)])
print(page.model_dump_json(indent=4))
Cursor-Based Pagination¶
What is Cursor-Based Pagination?¶
Cursor-Based pagination uses a cursor (a unique identifier) to keep track of the current position in the dataset. This method is more efficient for large datasets and provides consistent results.
Advantages¶
- Efficient for large datasets.
- Provides consistent results even if the data changes.
Disadvantages¶
- More complex to implement.
- Requires a unique and sequential field to act as the cursor.
from pydantic import BaseModel
from sqlalchemy import create_engine, select
from sqlalchemy.orm import DeclarativeBase, Mapped, Session, mapped_column
from fastapi_pagination import set_params, set_page
from fastapi_pagination.cursor import CursorPage, CursorParams
from fastapi_pagination.ext.sqlalchemy import paginate
engine = create_engine("sqlite:///:memory:")
class Base(DeclarativeBase):
pass
class User(Base):
__tablename__ = "users"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str] = mapped_column()
age: Mapped[int] = mapped_column()
class UserOut(BaseModel):
id: int
name: str
age: int
with engine.begin() as conn:
Base.metadata.drop_all(conn)
Base.metadata.create_all(conn)
with Session(engine) as session:
session.add_all(
[
User(name="John", age=25),
User(name="Jane", age=30),
User(name="Bob", age=20),
],
)
session.commit()
set_page(CursorPage[UserOut])
set_params(CursorParams(size=10))
page = paginate(session, select(User).order_by(User.id))
print(page.model_dump_json(indent=4))
Conclusion¶
Each pagination technique has its own advantages and disadvantages. The choice of technique depends on the specific requirements of your application, such as dataset size, performance needs, and consistency requirements.